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Abstract In this paper, the solvability of Stampacchia generalized vector quasi-equilib-
rium problem (in short, GVQEP) with set-valued mapping is studied. By using continuous
selection theorem and fixed point theorems, some existence theorems for (GVQEP) are
obtained without any monotonicity assumption. These theorems unify and improve some
results in the recent references.
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1 Introduction

Let E, Z be two topological vector spaces, X ⊆ E a nonempty subset, C ⊆ Z a convex
cone with apex at the origin, and with nonempty interior, intC �= ∅. Let L(E, Z) denote
the space of all continuous linear mappings from E into Z , and denote by 〈�, x〉 the value
of � ∈ L(E, Z) at x ∈ E . Let T : X → L(E, Z) be a given mapping. The weak vector
variational inequality (in short, WVVI) consists in finding x̄ ∈ X such that

(WVVI) 〈T x̄, y − x̄〉 �∈ −intC, ∀y ∈ X.

The vector variational inequality was first introduced and studied by Giannessi [16] in
the setting of finite dimensional Euclidean spaces. Later on, vector variational inequalities
and vector complementarity problems in infinite dimensional spaces were studied by many
authors (see Refs. [7,8,13,20,21,24,25,27,31], and references therein). Recently, Fang and
Huang [11] considered the following strong vector variational inequality (in short, VVI): find
x̄ ∈ X such that
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(VVI) 〈T x̄, y − x̄〉 �∈ −C\{0}, ∀y ∈ X.

As a significant generalization of variational inequalities and complementarity problems,
the equilibrium problem was proposed and studied by Blum and Oettli [5]. Recently, the
equilibrium problem was extensively generalized to the vector mapping (see Refs. [1,2,4,
9,15,17,18,23,26], and references therein). Let f : X × X → Z be a given mapping. The
weak vector equilibrium problem (in short, WVEP) consists in finding x̄ ∈ X such that

(WVEP) f (x̄, y) �∈ −intC, ∀y ∈ X.

Let K : X → 2X be a set-valued mapping. Lately, there have been increasing interests
(for example, Fu [14], Wang et al. [29]) in considering the following Stampacchia vector
quasi-equilibrium problem (in short, VQEP): find x̄ ∈ X such that x̄ ∈ K (x̄) and

(VQEP) f (x̄, y) �∈ −C\{0}, ∀y ∈ K (x̄).

To the best of our knowledge, most of the studies are for (WVVI) or (WVEP), but just a
few for (VVI) or (VQEP) in the literature.

In this paper, we will consider the following more general vector quasi-equilibrium prob-
lem.

Let Y be a nonempty subset of a Hausdorff topological vector space and T : X → 2Y ,

f : X ×Y × X → 2Z be two set-valued mappings. Moreover, let C : X → 2Z be a set-valued
mapping such that, for all x ∈ X, C(x) is a nonempty convex cone with apex at the origin.
We consider the following Stampacchia generalized vector quasi-equilibrium problem (in
short,GVQEP): find x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ K (x̄) and

(GVQEP) f (x̄, ȳ, x) �⊆ −C(x̄)\{0}, ∀x ∈ K (x̄).

The main purpose of this paper is to study the solvability of (GVQEP). Motivated by
Refs. [19,28], we obtained some existence theorems for (GVQEP) without any monotonic-
ity assumption by using continuous selection theorem and fixed point theorems.

2 Preliminaries

In this section, we shall recall some definitions and lemmas used in the sequel.

Definition 2.1 [3] Let X, Y be two topological spaces and T : X → 2Y be a set-valued
mapping.

(i) T is said to be upper semi-continuous (in short, u.s.c.) at x ∈ X if, for any open set
V containing T (x), there exists an open set U containing x such that T (t) ⊆ V for
all t ∈ U ; T is said to be u.s.c. if it is u.s.c. at every x ∈ X .

(ii) T is said to be lower semi-continuous (in short, l.s.c.) at x ∈ X if, for any open set V
with T (x) ∩ V �= ∅, there exists an open set U containing x such that T (t) ∩ V �= ∅
for all t ∈ U ; T is said to be l.s.c. if it is l.s.c. at every x ∈ X .

(iii) T is said to be continuous if it is both u.s.c. and l.s.c. at the same time.

Lemma 2.1 [3] Let X, Y be two topological spaces and T : X → 2Y be a set-valued map-
ping.

(i) If T is u.s.c. with closed values, then T is closed;
(ii) if T is closed and Y is compact, then T is u.s.c.;
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Definition 2.2 [30] Let X, Y be two topological spaces and T : X → 2Y be a set-valued
mapping. For each y ∈ Y, T −1(y) := {x ∈ X :y ∈ T (x)} is said to be the lower sections
of T .

Let A be a subset of a topological vector space, we denote by CoA the convex hull of A.

Definition 2.3 Let X, Z be two topological vector spaces and C : X → 2Z be a set-valued
mapping such that, for every x ∈ X , C(x) is a nonempty convex cone with apex at the origin.
Let F : X × X → 2Z be a given set-valued mapping and x ∈ X be a given point.

(i) F(x, y) is called C-convex in y ∈ X if, for all y1, y2 ∈ X and λ ∈ (0, 1), one has

F(x, λy1 + (1 − λ)y2) ⊆ λF(x, y1) + (1 − λ)F(x, y2) − C(x);
(ii) F(x, y) is called properly C-quasiconvex in y ∈ X if, for all y1, y2 ∈ X , λ ∈ (0, 1)

and for any z ∈ F(x, λy1 + (1 − λ)y2), there exist some i and some zi ∈ F(x, yi ),
such that z ∈ zi − C(x).

Remark 2.1 (1) If F is a single-valued mapping and C(x) ≡ C(a fixed convex cone), ∀x ∈ X ,
the above properly C-quasiconvexity reduces to the conventional properly convexity intro-
duced by Ferro ([12]); (2) A mapping may be C-convex and not properly C-quasiconvex, and
conversely (see Ref. [12]); (3) By induction, if, for any fixed x ∈ X, F(x, y) is C-convex in
y ∈ X , then, for any finite set ∧ = {y1, y2, . . . , yn} ⊆ X and for any y = ∑n

i=1 ti yi ∈ Co∧,
one has

F(x, y) ⊆
n∑

i=1

ti F(x, yi ) − C(x);

Similarly, if, for any fixed x ∈ X, F(x, y) is properly C-quasiconvex in y ∈ X , then, for any
finite set ∧ = {y1, y2, . . . , yn} ⊆ X and for any y = ∑n

i=1 ti yi ∈ Co∧, for any z ∈ F(x, y),
there must exist some i and some zi ∈ F(x, yi ) such that

z ∈ zi − C(x).

The following lemmas are our important tools.

Lemma 2.2 [32] Let X be a topological space and Y be a convex set of a topological vec-
tor space. Suppose a mapping G: X → 2Y has open lower sections. Then, the mapping
F : X → 2Y , defined by F(x) = CoG(x) for all x ∈ X, has open lower sections.

Lemma 2.3 [32] Let X, Y be two topological spaces, and let G: X → 2Y and K : X → 2Y

be two set-valued mappings with open lower sections. Then, the mapping θ : X → 2Y , defined
by θ(x) = G(x) ∩ K (x) for all x ∈ X, has open lower sections.

Theorem 2.1 [32, Continuous Selection Theorem] Let X be a paracompact Hausdorff topo-
logical space and Y be a topological vector space. Suppose that F : X → 2Y is a set-valued
mapping with nonempty convex values and open lower sections. Then there exists a contin-
uous mapping f : X → Y such that f (x) ∈ F(x) for all x ∈ X.

Theorem 2.2 [6, Browder Fixed-Point Theorem] Let X be a nonempty compact convex
subset of a Hausdorff topological vector space. Suppose that H : X → 2X is a set-valued
mapping with nonempty convex values and open lower sections. Then, H has a fixed point.

Theorem 2.3 [10, Eilenberg–Montgomery Fixed Point Theorem] Let X be a compact con-
vex subset of a locally convex Hausdorff topological vector space and let T : X → 2X be
an upper semi-continuous set-valued mapping with nonempty closed acyclic values. Then,
T has a fixed point in X.
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3 Main results

In this section, we shall present some existence theorems for GVQEP under some suitable
assumptions of continuity and convexity by using continuous selection theorem and fixed
point theorems.

Throughout this section, unless otherwise specified, we always assume that Z is a Haus-
dorff topological vector space, X, Y are two nonempty compact convex sets of two locally
convex Hausdorff topological vector spaces, respectively.

Theorem 3.1 Suppose that

(i) K : X → 2X is a set-valued mapping with nonempty closed convex values and open
lower sections;

(ii) T : X → 2Y is u.s.c. with nonempty closed acyclic values;
(iii) C : X → 2Z is a set-valued mapping such that, for each x ∈ X, C(x) is a convex

pointed cone with apex at the origin;
(iv) f : X × Y × X → 2Z is a set-valued mapping with nonempty values, which satisfies

the following conditions:

(a) For all u ∈ X, the set {(x, y) ∈ X × Y : f (x, y, u) ⊆ −C(x)\{0}} is open;
(b) For all x ∈ X, y ∈ Y , f (x, y, x) ⊆ C(x);
(c) For all x ∈ X, y ∈ Y , the mapping f (x, y, u) is C-convex or properly C-quasi-

convex in u.

Then, there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ K (x̄) and

f (x̄, ȳ, x) �⊆ −C(x̄)\{0}, ∀x ∈ K (x̄).

Proof Define a set-valued mapping P: X × Y → 2X by

P(x, y) = {u ∈ X : f (x, y, u) ⊆ −C(x)\{0}}, ∀(x, y) ∈ X × Y. (3.1)

Then, the theorem will be proven if we can show that there exist x̄ ∈ X and ȳ ∈ T (x̄) such
that x̄ ∈ K (x̄) and

K (x̄) ∩ P(x̄, ȳ) = ∅. (3.2)

Consider the set-valued mapping G: X × Y → 2X defined by

G(x, y) = K (x) ∩ CoP(x, y), ∀x ∈ X, y ∈ Y.

Now, we shall show that there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ K (x̄) and

G(x̄, ȳ) = K (x̄) ∩ CoP(x̄, ȳ) = ∅. (3.3)

In particular,
K (x̄) ∩ P(x̄, ȳ) = ∅.

i.e., (3.2) holds.
Indeed, let U = {(x, y) ∈ X × Y : G(x, y) �= ∅}.
(1) If U = ∅, then ∀x ∈ X, y ∈ Y, G(x, y) = ∅. Since X is compact and convex,

and K : X → 2X has nonempty convex values and open lower sections, it follows from
the Browder Fixed Point Theorem that there exists a fixed point x̄ ∈ K (x̄). Also, from the
assumption (ii), we have T (x̄) �= ∅. By picking ȳ ∈ T (x̄), then, we have G(x̄, ȳ) = ∅.
Hence, the assertion (3.3) holds in this particular case.
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(2) If U �= ∅.

By hypothesis (a), for all u ∈ X , the set

{(x, y) ∈ X × Y : f (x, y, u) ⊆ −C(x)\{0}} (3.4)

is open, or equivalently the set P−1(u) is open for all u ∈ X . Hence, P has open lower sec-
tions. It follows from Lemma 2.2 that CoP has open lower sections. In addition, K has open
lower sections by hypothesis (i), we can apply Lemma 2.3 to obtain that G has open lower
sections. Notice that U = ⋃

v∈X G−1(v), hence, U is open. Define a set-valued mapping
H : X × Y → 2X by

H(x, y) =
{

G(x, y), if (x, y) ∈ U,

K (x), otherwise.

Then, for each v ∈ X , we have H−1(v) = G−1(v) ∪ (K −1(v) × Y ), which is also open,
i.e., H has open lower sections. Moreover, for all x ∈ X, y ∈ Y, H(x, y) is nonempty and
convex, it follows from the Continuous Selection Theorem that there exists a continuous
selector h: X ×Y → X of H . Now, we consider the set-valued mapping M : X ×Y → 2X×Y

given by

M(x, y): = (h(x, y), T (x)), ∀x ∈ X, y ∈ Y.

Then, by the assumptions, M has nonempty closed acyclic values. Further, M is closed since
h is continuous and T is u.s.c. with nonempty closed values (see Lemma 2.1(i)). Notice that
X × Y is compact, it follows from Lemma 2.1(ii) that M is u.s.c.. Hence, by the Eilenberg–
Montgomery Fixed Point Theorem, there exists a fixed point (x̄, ȳ) ∈ M(x̄, ȳ). Moreover,
(x̄, ȳ) �∈ U . Suppose to the contrary that (x̄, ȳ) ∈ U . Then

x̄ = h(x̄, ȳ) ∈ H(x̄, ȳ) = G(x̄, ȳ) ⊆ CoP(x̄, ȳ)

i.e.,

x̄ ∈ CoP(x̄, ȳ).

Hence, there exist x1, x2, . . . , xn in X with xi ∈ P(x̄, ȳ), i = 1, 2, . . . , n, and ti ≥ 0 with∑n
i=1 ti = 1 such that x̄ = ∑n

i=1 ti xi . Thus,

f (x̄, ȳ, xi ) ⊆ −C(x̄)\{0}, i = 1, 2, . . . , n. (3.5)

If f (x̄, ȳ, ·) is C-convex, then

f (x̄, ȳ, x̄) ⊆
n∑

i=1

ti f (x̄, ȳ, xi ) − C(x̄)

⊆ −C(x̄)\{0} − C(x̄)

⊆ −C(x̄)\{0}. (3.6)

If f (x̄, ȳ, ·) is properly C-quasiconvex, then, for any z ∈ f (x̄, ȳ, x̄), there exist some i and
some zi ∈ f (x̄, ȳ, xi ) such that

z ∈ zi − C(x̄)

⊆ f (x̄, ȳ, xi ) − C(x̄)

⊆ −C(x̄)\{0} − C(x̄)

⊆ −C(x̄)\{0}. (3.7)
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By the arbitrariness of z, we also have

f (x̄, ȳ, x̄) ⊆ −C(x̄)\{0}. (3.8)

Moreover, f (x̄, ȳ, x̄) ⊆ C(x̄) by the hypothesis (b). Hence,

C(x̄) ∩ (−C(x̄)\{0}) �= ∅. (3.9)

On the other hand, from the assumption (iii), we have C(x̄) is a pointed cone with apex at
the origin. Hence,

C(x̄) ∩ (−C(x̄)\{0}) = ∅. (3.10)

(3.9) contradicts with (3.10). Thus (x̄, ȳ) �∈ U . Therefore, x̄ ∈ K (x̄), ȳ ∈ T (x̄) and
G(x̄, ȳ) = ∅. So, the assertion (3.3) also holds in this case.

This completes the proof.

From Theorem 3.1, we can obtain the following result.

Corollary 3.1 Let C ⊆ Z be a nonempty convex pointed cone with apex at the origin.
Suppose that

(i) K : X → 2X is a set-valued mapping with nonempty closed convex values and open
lower sections;

(ii) T : X → 2Y is u.s.c. with nonempty closed acyclic values;
(iii) f : X × Y × X → Z is a single-valued mapping, which satisfies the following condi-

tions:

(a) For all u ∈ X, the set {(x, y) ∈ X × Y : f (x, y, u) ∈ −C\{0}} is open;
(b) For all x ∈ X, y ∈ Y , f (x, y, x) ∈ C;
(c) For all x ∈ X, y ∈ Y , the mapping f (x, y, u) is C-convex or properly C-quasi-

convex in u.

Then, there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ K (x̄) and

f (x̄, ȳ, x) �∈ −C\{0}, ∀x ∈ K (x̄).

Proof In Theorem 3.1, let

C(x) ≡ C, ∀ x ∈ X.

Then, Theorem 3.1 yields the conclusion.

Theorem 3.2 Suppose that

(i) K : X → 2X is a set-valued mapping with nonempty closed convex values and open
lower sections;

(ii) C : X → 2Z is a set-valued mapping such that, for each x ∈ X, C(x) is a convex
pointed cone with apex at the origin;

(iii) F : X × X → 2Z is a set-valued mapping with nonempty values, which satisfies the
following conditions:

(a) For all y ∈ X, the set {x ∈ X : F(x, y) ⊆ −C(x)\{0}} is open;
(b) For all x ∈ X, F(x, x) ⊆ C(x);
(c) For all x ∈ X, the mapping F(x, y) is C-convex or properly C-quasiconvex

in y.

Then, there exists x̄ ∈ X such that x̄ ∈ K (x̄) and

F(x̄, x) �⊆ −C(x̄)\{0}, ∀x ∈ K (x̄).
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Proof In Theorem 3.1, let Y = {ȳ} be a singleton set and let

T (x) ≡ {ȳ}, for all x ∈ X,

f (x, ȳ, y) = F(x, y), for all (x, y) ∈ X × X.

Then, Theorem 3.1 yields the conclusion.

From Theorem 3.2, we can obtain the following result.

Corollary 3.2 Let C ⊆ Z be a nonempty convex pointed cone with apex at the origin.
Suppose that

(i) K : X → 2X is a set-valued mapping with nonempty closed convex values and open
lower sections;

(ii) F : X × X → 2Z is a set-valued mapping with nonempty values, which satisfies the
following conditions:

(a) For all y ∈ X, the set {x ∈ X : F(x, y) ⊆ −C\{0}} is open;
(b) For all x ∈ X, F(x, x) ⊆ C;
(c) For all x ∈ X, the mapping F(x, y) is C-convex or properly C-quasiconvex in

y.

Then, there exists x̄ ∈ X such that x̄ ∈ K (x̄) and

F(x̄, x) �⊆ −C\{0}, ∀x ∈ K (x̄).

Theorem 3.3 Let X be a nonempty compact convex set in a locally convex Hausdorff topo-
logical vector space E. Let C be a nonempty convex cone with apex at the origin in a
Hausdorff topological vector space Z. Suppose that

(i) K : X → 2X is a set-valued mapping with nonempty closed convex values and open
lower sections;

(ii) T : X → L(E, Z) is a single-valued mapping such that, for all y ∈ X, the set
{x ∈ X : 〈T x, y − x〉 ∈ −C\{0}} is open.

Then, there exists x̄ ∈ X such that x̄ ∈ K (x̄) and

〈T x̄, x − x̄〉 �∈ −C\{0}, ∀x ∈ K (x̄).

Proof The proof is similar as that of Theorem 3.1 and so is omitted.

Remark 3.1 In the above Theorem 3.3, the cone C is not necessary pointed.

Corollary 3.3 Let X, E, C, Z be the same as in Theorem 3.3. Suppose that T : X → L(E, Z)

is a single-valued mapping such that, for all y ∈ X, the set {x ∈ X :〈T x, y − x〉 ∈ −C\{0}}
is open. Then, there exists x̄ ∈ X such that

〈T x̄, x − x̄〉 �∈ −C\{0}, ∀x ∈ X.

Remark 3.2 If X, Z are two real Banach spaces, then, the above corollary 3.3 is the main
result: Theorem 1 in Fang and Huang[11].

The following theorem is a generalization of the main result—Theorem 2 ([28], P. 757).

Theorem 3.4 Suppose that

(i) K : X → 2X is a set-valued mapping with nonempty closed convex values and open
lower sections;
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(ii) T : X → 2Y is u.s.c. with nonempty closed acyclic values;
(iii) g: X × Y × X → R ∪ {±∞} is a function such that g(x, y, u) is l.s.c. in x, y and

γ−diagonally quasiconcave in u (see [28, p. 754]).

Then, there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ K (x̄) and

g(x̄, ȳ, x) ≤ γ, ∀x ∈ K (x̄).

Proof Let Z = R ∪ {±∞}, C = R+ = [0,+∞). Let

C(x) = C = R+, ∀x ∈ X;
and

f (x, y, u) = γ − g(x, y, u), ∀ x, u ∈ X, y ∈ Y.

Obviously, f (x, y, u) is u.s.c. in x, y since g(x, y, u) is l.s.c. in x, y. Hence, for any fixed
u ∈ X , the set {(x, y) ∈ X × Y : f (x, y, u) ∈ −C\{0}} = {(x, y) ∈ X × Y : f (x, y, u) < 0}
is open. The remaining arguments are the same as that of Theorem 3.1 except for replacing
′⊆′ with ′∈′ in (3.1) and (3.4) and proving again that (x̄, ȳ) �∈ U .

Indeed, suppose to the contrary that (x̄, ȳ) ∈ U . Then

x̄ = h(x̄, ȳ) ∈ H(x̄, ȳ) = G(x̄, ȳ) ⊆ CoP(x̄, ȳ)

i.e.,

x̄ ∈ CoP(x̄, ȳ).

Hence, there exist x1, x2, . . . , xn in X with xi ∈ P(x̄, ȳ), i = 1, 2, . . . , n, and ti ≥ 0 with∑n
i=1 ti = 1 such that x̄ = ∑n

i=1 ti xi . Thus,

f (x̄, ȳ, xi ) ∈ −C(x̄)\{0} = (−∞, 0), i = 1, 2, . . . , n.

i.e.,

f (x̄, ȳ, xi ) < 0, i = 1, 2, . . . , n. (3.11)

On the other hand, since g(x̄, ȳ, u) is γ —diagonally quasiconcave in u, it follows that

min
i

g(x̄, ȳ, xi ) ≤ γ.

Thus, there must exists some i0 such that

g(x̄, ȳ, xi0) ≤ γ.

Therefore,

f (x̄, ȳ, xi0) = γ − g(x̄, ȳ, xi0) ≥ 0, (3.12)

which contradicts with (3.11). Hence, (x̄, ȳ) �∈ U .
This completes the proof.

Remark 3.3 In the main result−Theorem 2 in Tian ([28], p. 757), except all the assump-
tions in the above Theorem 3.4, the condition ” K is u.s.c.” is necessary. Hence, the above
theorem 3.4 is a generalization of it.
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Let C ⊆ Z be a convex cone, and let Z∗ be the topological dual space of Z . Denote by
C∗ the dual cone of C , i.e.,

C∗ = {� ∈ Z∗:〈�, x〉 ≥ 0, ∀x ∈ C}.
and denote the quasi-interior of C∗ by C# (see Ref. [22]), i.e.,

C# = {� ∈ Z∗:〈�, x〉 > 0, ∀x ∈ C\{0}}.
Clearly, C# is a convex subset of Z∗.

C# �= ∅ if and only if C has a base (see Ref. [22]). If C is a closed convex pointed cone of
a real separable normed space, by the Krein-Rutman Theorem, then C# �= ∅ (see Ref. [22]).

Theorem 3.5 Suppose that

(i) K : X → 2X is a set-valued mapping with nonempty closed convex values and open
lower sections;

(ii) T : X → 2Y is u.s.c. with nonempty closed acyclic values;
(iii) C : X → 2Z is a set-valued mapping such that, for all x ∈ X, C(x) is a convex cone,

and C#: X → 2Z∗
has continuous selection;

(iv) the bilinear form 〈·, ·〉 is continuous on Z∗ × Z;
(v) f : X × Y × X → 2Z has nonempty compact values, which satisfies the following

conditions:

(a) For all x ∈ X, y ∈ Y , f (x, y, x) ⊆ C(x);
(b) For all u ∈ X, f (x, y, u) is u.s.c. in x, y;
(c) For all x ∈ X, y ∈ Y , f (x, y, u) is C-convex or properly C-quasiconvex in u.

Then, there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ K (x̄) and

f (x̄, ȳ, x) �⊆ −C(x̄)\{0}, ∀x ∈ K (x̄).

Proof Since C# has continuous selection, i.e., there exists a continuous mapping ξ : X → Z∗
such that

ξ(x) ∈ C#(x), ∀x ∈ X.

Let

ξ(x, z) = ξ(x)(z) = 〈ξ(x), z〉, ∀ x ∈ X, z ∈ Z;
and

ϕ(x, y, u) = min ξ(x)[− f (x, y, u)] = −maxz∈ f (x,y,u)ξ(x, z), ∀ x, u ∈ X, z ∈ Z .

From the hypothesis, the function ξ(·, ·) is continuous. In addition, f (x, y, u) is u.s.c. in x, y
and f has nonempty compact values. It follows from Proposition 21 [3, p. 119] that ϕ(x, y, u)

is l.s.c. in x, y. Hence, if we can show that ϕ(x, y, u) is 0−diagonally quasiconcave in u,
then, it follows from Theorem 3.4 that there exists x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ K (x̄)

and

ϕ(x̄, ȳ, x) ≤ 0, ∀x ∈ K (x̄).

i.e.,

maxz∈ f (x̄,ȳ,x)ξ(x̄, z) ≥ 0, ∀ x ∈ K (x̄). (3.13)
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We assert that

f (x̄, ȳ, x) �⊆ −C(x̄)\{0}, ∀ x ∈ K (x̄). (3.14)

Indeed, suppose to the contrary that there exists some x0 ∈ K (x̄) such that

f (x̄, ȳ, x0) ⊆ −C(x̄)\{0}
Since ξ(x̄) ∈ C#(x̄), it follows that, for all z ∈ f (x̄, ȳ, x0), ξ(x̄, z) < 0. Hence,

maxz∈ f (x̄,ȳ,x0)ξ(x̄, z) < 0.

which contradicts with (3.13). Therefore, (3.14) holds, which implies that the theorem is
proven.

So, it remains to prove that ϕ(x, y, u) is 0−diagonally quasiconcave in u. Suppose to the
contrary that there exists a finite set ∧ = {x1, x2, . . . , xn} and ti ≥ 0 with

∑n
i=1 ti = 1 such

that x = ∑n
i=1 ti xi ∈ Co∧ and min

i
ϕ(x, y, xi ) > 0. It follows that

maxz∈ f (x,y,xi )ξ(x, z) < 0, i = 1, 2, . . . , n.

Then, ∀ i , we have

ξ(x, zi ) < 0, ∀ zi ∈ f (x, y, xi ).

If f (x, y, u) is C-convex in u, then

f (x, y, x) ⊆
n∑

i=1

ti f (x, y, xi ) − C(x).

Thus, for any z ∈ f (x, y, x), there exists zi ∈ f (x, y, xi ), i = 1, 2, . . . , n and c ∈ C(x)

such that

z = t1z1 + t2z2 + · · · + tnzn − c.

Notice that ξ(x, z) = ξ(x)(z) is linear in z since ξ(x) ∈ C#(x), hence,

ξ(x, z) =
n∑

i=1

tiξ(x, zi ) − ξ(x, c) < 0.

By the arbitrariness of z, we have

min ξ(x) f (x, y, x) < 0. (3.15)

If f (x, y, u) is properly C-quasiconvex in u, then, for any z ∈ f (x, y, x), there exists some
i and some zi ∈ f (x, y, xi ) and c ∈ C(x) such that z = zi − c, Hence,

ξ(x, z) = ξ(x, zi ) − ξ(x, c) < 0.

By the arbitrariness of z, we also have

min ξ(x) f (x, y, x) < 0. (3.16)

On the other hand, since f (x, y, x) ⊆ C(x) and ξ(x) ∈ C#(x), it follows that, for any
z ∈ f (x, y, x), ξ(x, z) ≥ 0. Hence,

min ξ(x) f (x, y, x) ≥ 0. (3.17)
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Both (3.15) and (3.16) contradicts with (3.17). Thus, ϕ(x, y, u) is 0−diagonally quasiconcave
in u.

This completes the proof.

Remark 3.4 If ∀x ∈ X , C#(x) �= ∅ and ∀z∗ ∈ Z∗, the set {x ∈ X : z∗ ∈ C#(x)} is open
in X , then, it follows from the Continuous Selection Theorem that the mapping C# has a
continuous selector.
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